7 research outputs found

    Landauer Theory, Inelastic Scattering and Electron Transport in Molecular Wires

    Full text link
    In this paper we address the topic of inelastic electron scattering in mesoscopic quantum transport. For systems where only elastic scattering is present, Landauer theory provides an adequate description of transport that relates the electronic current to single-particle transmission and reflection probabilities. A formalism proposed recently by Bonca and Trugman facilitates the calculation of the one-electron transmission and reflection probabilities for inelastic processes in mesoscopic conductors connected to one-dimensional ideal leads. Building on their work, we have developed a self-consistent procedure for the evaluation of the non-equilibrium electron distributions in ideal leads connecting such mesoscopic conductors to electron reservoirs at finite temperatures and voltages. We evaluate the net electronic current flowing through the mesoscopic device by utilizing these non-equilibrium distributions. Our approach is a generalization of Landauer theory that takes account of the Pauli exclusion principle for the various competing elastic and inelastic processes while satisfying the requirement of particle conservation. As an application we examine the influence of elastic and inelastic scattering on conduction through a two site molecular wire with longitudinal phonons using the Su-Schrieffer-Heeger model of electron-phonon coupling.Comment: 25 pages, 8 figure

    Self-Trapping of Polarons in the Rashba-Pekar Model

    Get PDF
    We performed quantum Monte Carlo study of the exciton-polaron model which features the self-trapping phenomenon when the coupling strength and/or particle momentum is varied. For the first time accurate data for energy, effective mass, the structure of the polaronic cloud, dispersion law, and spectral function are available throughout the crossover region. We observed that self-trapping can not be reduced to hybridization of two states with different lattice deformation, and that at least three states are involved in the crossover from light- to heavy-mass regimes.Comment: 5 pages, 5 figures, Accepted to Phys. Rev. B Rapid Communication

    Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    Full text link
    The single band Hubbard and the two band Periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems - the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half-filling. We address potential implications of this for theories of the rare earth ``volume collapse'' transition.Comment: 4 pages (RevTeX) including 4 figures in 7 eps files; as to appear in Phys. Rev. Let

    Quantum Algorithms for Fermionic Simulations

    Full text link
    We investigate the simulation of fermionic systems on a quantum computer. We show in detail how quantum computers avoid the dynamical sign problem present in classical simulations of these systems, therefore reducing a problem believed to be of exponential complexity into one of polynomial complexity. The key to our demonstration is the spin-particle connection (or generalized Jordan-Wigner transformation) that allows exact algebraic invertible mappings of operators with different statistical properties. We give an explicit implementation of a simple problem using a quantum computer based on standard qubits.Comment: 38 pages, 2 psfigur

    Doping-dependent study of the periodic Anderson model in three dimensions

    Full text link
    We study a simple model for ff-electron systems, the three-dimensional periodic Anderson model, in which localized ff states hybridize with neighboring dd states. The ff states have a strong on-site repulsion which suppresses the double occupancy and can lead to the formation of a Mott-Hubbard insulator. When the hybridization between the ff and dd states increases, the effects of these strong electron correlations gradually diminish, giving rise to interesting phenomena on the way. We use the exact quantum Monte-Carlo, approximate diagrammatic fluctuation-exchange approximation, and mean-field Hartree-Fock methods to calculate the local moment, entropy, antiferromagnetic structure factor, singlet-correlator, and internal energy as a function of the fdf-d hybridization for various dopings. Finally, we discuss the relevance of this work to the volume-collapse phenomenon experimentally observed in f-electron systems.Comment: 12 pages, 8 figure

    Dynamical magnetic susceptibility in the spin-fermion model for cuprate superconductors

    No full text
    corecore